skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lamman, Claire"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present estimators for quantifying intrinsic alignments in large spectroscopic surveys that efficiently capture line-of-sight (LOS) information while being relatively insensitive to redshift-space distortions (RSD). We demonstrate that changing the LOS integration range, pimax, as a function of transverse separation outperforms the conventional choice of a single pimax value. This is further improved by replacing the flat pimax cut with a LOS weighting based on shape projection and RSD. Although these estimators incorporate additional LOS information, they are projected correlations that exhibit signal-to-noise ratios comparable to 3D correlation functions, such as the IA quadrupole. Using simulations from Abacus Summit, we evaluate these estimators and provide recommended pimax values and weights for projected separations of 1 - 100 Mpc/h. These will improve measurements of intrinsic alignments in large cosmological surveys and the constraints they provide for both weak lensing and direct cosmological applications. 
    more » « less
  2. null (Ed.)